Topographic Independent Component Analysis

نویسنده

  • Aapo Hyvärinen
چکیده

In ordinary independent component analysis, the components are assumed to be completely independent, and they do not necessarily have any meaningful order relationships. In practice, however, the estimated "independent" components are often not at all independent. We propose that this residual dependence structure could be used to define a topographic order for the components. In particular, a distance between two components could be defined using their higher-order correlations, and this distance could be used to create a topographic representation. Thus, we obtain a linear decomposition into approximately independent components, where the dependence of two components is approximated by the proximity of the components in the topographic representation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overcomplete topographic independent component analysis

Topographic and overcomplete representations of natural images/videos are important problems in computational neuroscience. We propose a new method using both topographic and overcomplete representations of natural images, showing emergence of properties similar to those of complex cells in primary visual cortex (V1). This method can be considered as an extension of model in Hyvärinen et al. [T...

متن کامل

Topographic Independent Component Analysis of Gene Expression Time Series Data

Topographic independent component analysis (TICA) is an interesting extension of the conventional ICA, which aims at finding a linear decomposition into approximately independent components with the dependence between two components is approximated by their proximity in the topographic representation. In this paper we apply the topographic ICA to gene expression time series data and compare it ...

متن کامل

Model-Free Functional MRI Analysis Using Topographic Independent Component Analysis

Data-driven fMRI analysis techniques include independent component analysis (ICA) and different types of clustering in the temporal domain. Since each of these methods has its particular strengths, it is natural to look for an approach that unifies Kohonen's self-organizing map and ICA. This is given by the topographic independent component analysis. While achieved by a slight modification of t...

متن کامل

Topographic Independent Component Analysis: Visualizing the Dependence Structure

In ordinary independent component analysis, the components are assumed to be completely independent, and they do not necessarily have any meaningful order relationships. In practice, however, the estimated independentt components are often not at all independent. We propose that this residual dependence structure could be used to deene a topographic order for the components. In particular, a di...

متن کامل

Topographic independent component analysis as a model of V1 organization and receptive fields

Independent component analysis (ICA) has been recently used as a model of natural image statistics and V1 simple cell receptive "elds. Here we show how to extend the ICA model to explain V1 topography as well. This is done by relaxing the independence assumption and ordering the basis vectors so that vectors with strong higher-order correlations are near each other. This is a new principle of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 13 7  شماره 

صفحات  -

تاریخ انتشار 2001